Sistem Monitoring Horizontal Axial Wind Turbine (HAWT) Berbasis Internet Of Things

  • Munir Azhari Institut Teknologi Sumatera
  • Dean Corio
Keywords: monitoring, website, current, voltage, error

Abstract

Wind power is one of the renewable energy sources used to generate electrical energy and is generally implemented in areas with large wind potential sources. The monitoring process of the power plant is usually carried out by the operator or user by recording the current, voltage, power, and wind speed produced by the wind turbine manually or conventionally. This direct monitoring process requires greater effort and takes a long time and the data obtained is less accurate. Therefore, a monitoring system is needed that is capable of remote monitoring and applies the concept of the Internet of Things (IoT) so that the current, voltage, power, and wind speed values ​​can be obtained by users in real time through a prototype website designed. Some of the tests carried out in this study were testing the accuracy of sensor readings by looking for error values, sending data by looking for delay values, and user experience when using the website using the User Experience Questions (UEQ) method. The results showed that the monitoring system was able to provide information to users through the website with an average response time of 12.60 seconds, error in current readings of 3.51% and voltage of 0.22%. Then for the UEQ score, the website obtained a score above the average on the aspects of clarity, attractiveness, novelty, efficiency, accuracy and got a good score on the stimulation aspect.

Downloads

Download data is not yet available.

References

[1] M. E. Putra, Z. Amin, I. Islahuddin, and ..., “Rancang Bangun Sistem Kontrol dan Monitoring Data Turbin Angin Berbasis Website Menggunakan Raspberry Pi 3B+,” Met. J. Sist. …, vol. 02, pp. 70–81, 2020, [Online]. Available: http://metal.ft.unand.ac.id/index.php/metal/article/view/129.
[2] M. A. Pratama and M. Widyartono, “Rancang Bangun Prototipe Pemantauan Biaya Tagihan Listrik Berbasis Arduino Mega,” Jurornal Tek. Elektro, vol. 9, no. 2, pp. 385–392, 2020.
[3] N. Gusriani and M. Yuhendri, “Monitoring Pembangkit Listrik Tenaga Angin Menggunakan Arduino Berbasis GUI Matlab,” JTEIN J. Tek. Elektro Indones., vol. 1, no. 2, pp. 229–233, 2020, doi: 10.24036/jtein.v1i2.76.
[4] F. Atabiq, M. A. Wildan, and M. R. Alfianto, “Rancang Bangun Sistem Pemantauan Luaran Pico Generator pada Pembangkit Listrik Tenaga Bayu Sumbu Vertikal menggunakan Arduino UNO,” J. Appl. Electr. Eng., vol. 5, no. 2, pp. 43–49, 2021, doi: 10.30871/jaee.v5i2.3143.
[5] I. Syaifudin, A. B. Yunanda, and A. Kridoyono, “Simulasi Alat Pemantau Pembangkit Listrik Tenaga Angin Menggunakan Mikrokontroler Melalui Monitor PC,” KONVERGENSI, vol. 15, no. 1, pp. 1–9, 2019.
[6] B. Chaniago and A. Hamzah, “Analisa dan Desain Monitoring Pembangkit Listrik Tenaga Angin dengan Menggunakan Web dan Arduino,” Jom Fteknik, vol. 5, no. 2, pp. 1–6, 2018.
[7] A. J. Tamamy, Z. Arifin, and A. Amalia, “Desain Low-Cost Sistem Monitoring Pengukuran Potensi Tenaga Matahari dan Tenaga Angin,” J. Rekayasa Elektr., vol. 15, no. 1, 2019, doi: 10.17529/jre.v15i1.12077.
[8] A. Sukandi, E. Ridwan, D. Andini, H. N. Gifari, and M. F. Iriansyah, “Rancang Bangun Kontroler Pembangkit Listrik Hybrid Angin Dan Surya Berbasis Arduino,” Pros. Semin. Nas. Tek. Mesin Politek. Negeri Jakarta, pp. 62–72, 2020.
[9] A. Noviyanto, D. Notosudjono, and D. B. Fiddiansyah, “Perancangan Sistem Monitoring Prototipe Pembangkit Hibrid PLTS dengan PLTB Berbasis Internet Of Things (Iot),” J. Online Mhs. Bid. Tek. Elektro Univ. Pakuan, vol. 1, no. 1, pp. 1–11, 2018.
[10] R. Y. Pratama and M. Yuhendri, “Monitoring Turbin Angin Menggunakan Smartphone Android,” JTEV (Jurnal Tek. Elektro dan Vokasional), vol. 6, no. 2, p. 64, 2020, doi: 10.24036/jtev.v6i2.108517.
[11] D. Corio, R. Arwinda S, E. Liguna, M. Azhari, K. Kananda, and S. Istiphara, “Rancang Bangun Turbin Angin Axial Flux Permanent Magnet Generator Aplikasi pada Daerah Berkecepatan Angin Rendah,” J. Ecotipe (Electronic, Control. Telecommun. Information, Power Eng., vol. 9, no. 1, pp. 8–18, 2022, doi: 10.33019/jurnalecotipe.v9i1.2658.
[12] I. P. A. W. Widyatmika, N. P. A. W. Indrawati, I. W. W. A. Prastya, I. K. Darminta, I. G. N. Sangka, and A. A. N. G. Sapteka, “Perbandingan Kinerja Arduino Uno dan ESP32 Terhadap Pengukuran Arus dan Tegangan,” J. Otomasi Kontrol dan Instrumentasi, vol. 13, no. 1, pp. 35–47, 2021, doi: 10.5614/joki.2021.13.1.4.
[13] B. M. Atmegap, N. Arifin, R. S. Lubis, and M. Gapy, “Rancang Bangun Prototype Power Meter 1 Fasa Berbasis Mikrkontroller Atmega328P,” J. Karya Ilm. Tek. Elektro, vol. 4, no. 1, pp. 13–22, 2019.
[14] I. N. S. W. Wijaya, P. P. Santika, I. B. A. I. Iswara, and I. N. A. Arsana, “Analisis dan Evaluasi Pengalaman Pengguna PaTik Bali dengan Metode User Experience Questionnaire (UEQ),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 2, p. 217, 2021, doi: 10.25126/jtiik.2020762763.
[15] A. F. Darmawan and A. T. Hanuranto, “Perancangan Aplikasi Penunjang Kualitas Jamur Tiram Berbasis Internet of Things (IoT) Application,” eProceedings …, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15876.
Published
2022-06-20
How to Cite
Azhari, M., & Corio, D. (2022, June 20). Sistem Monitoring Horizontal Axial Wind Turbine (HAWT) Berbasis Internet Of Things. Elektron : Jurnal Ilmiah, 14(1), 13-20. https://doi.org/https://doi.org/10.30630/eji.14.1.272
Section
Articles