Feasibility and Design of Grid-connected Floating PVs in West Java, Indonesia

  • Handoko Rusiana Iskandar Universitas Jenderal Achmad Yani
  • Agnia Iman Universitas Jenderal Achmad Yani
  • Ahmad Daelami Politeknik Negeri Padang
Keywords: Cirata, floating PV, Jatiluhur, performance ratio, Saguling

Abstract

The modeling and design of grid-connected floating photovoltaic (PV) are covered in this paper. Using dams in West Java as a location with present floating PV potential, this paper encourages the development of renewable energy and the construction of fossil-free power plants in various parts of Indonesia. Three alternative locations—the Saguling, Cirata, and Jatiluhur dams—are proposed for floating-PV type designs, each having a capacity of 1 MW grid-connected. The modeling process uses a variety of dependable auxiliary software to simulate possible solar energy use as well as capacity design optimization of system components. Modeling and simulation findings indicate that the grids of the Saguling, Cirata, and Jatiluhur dam have a combined potential for electrical energy of 1705.2 MWh/year, 1635.4 MWh/year, and 1611.8 MWh/year, respectively, with an average performance ratio of 0.74 to 0.75. The total PV capacity for each dam is 1197 Wp, using 550 Wp/PV panel with an efficiency 21.51%/PV and 4 Inverters for grid connectivity. There are 544 PV units per array. 5561 m2 is the estimated area needed to build this system.

Downloads

Download data is not yet available.

References

[1] T. Reindle et al., Where Sun Meets Water: Floating Solar Handbook for Practitioners. Washington: Solar Energy Research Institute of Singapore (SERIS), 2019.
[2] A. Rachmi, B. Prakoso, Hanny Berchmans, I. Devi Sara, and Winne, “Panduan Perencanaan dan Pemanfaatan PLTS atap di Indonesia,” PLTS Atap. ICED (Indonesia Clean Energy Development), p. 94, 2020, [Online]. Available: https://drive.esdm.go.id/wl/?id=XOegh8pXO9FMjebl4x0joDD6hIZe94Fm.
[3] A. Ilmiah Aplikasi Teknologi, H. Suripto, A. Fathoni, P. Pengaraian, J. Tuanku Tambusai, and K. Rokan Hulu, “Analisis Kelayakan Pembangkit Listrik Tenaga Surya Secara Ekonomi; Sebuah Review Berdasarkan Studi Literatur di Indonesia,” J. Artik. Ilm. Apl. Teknol., vol. 13, no. 1, pp. 33–41, 2021, [Online]. Available: http://journal.upp.ac.id/index.php/aptek.
[4] International Renewable Energy Agency, Indonesia Energy Transition Outlook 2022, 2022nd ed. Abu Dhabi: International Renewable Energy Agency, 2022.
[5] M. W. Rahman, M. S. Mahmud, R. Ahmed, M. S. Rahman, and M. Z. Arif, “Solar Lanes and Floating Solar PV: New Possibilities for Source of Energy Generation in Bangladesh,” 2017 Innov. Power Adv. Comput. Technol. i-PACT 2017, vol. 2017-Janua, no. 2015, pp. 1–6, 2017, doi: 10.1109/IPACT.2017.8244878.
[6] G. Vasco, J. S. Silva, and A. Beluco, “Feasibility Study of a PV Hydro Hybrid System, with Photovoltaic Panels on Floating Structures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 366, no. 1, pp. 1–7, 2018, doi: 10.1088/1757-899X/366/1/012011.
[7] S. H. Kim, S. J. Yoon, and W. Choi, “Design and Construction of 1 MW Class Floating PV Generation Structural System using FRP Members,” Energies, vol. 10, no. 8, pp. 1–14, 2017, doi: 10.3390/en10081142.
[8] Y. K. Choi, “A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact,” Int. J. Softw. Eng. its Appl., vol. 8, no. 1, pp. 75–84, 2014, doi: 10.14257/ijseia.2014.8.1.07.
[9] W. C. L. Kamuyu, J. R. Lim, C. S. Won, and H. K. Ahn, “Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs,” Energies, vol. 11, no. 2, 2018, doi: 10.3390/en11020447.
[10] E. Cuce, P. M. Cuce, S. Saboor, A. Ghosh, and Y. Sheikhnejad, “Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges,” Sustain., vol. 14, no. 5, pp. 1–25, 2022, doi: 10.3390/su14052626.
[11] M. R. A. Refaai, L. Dhanesh, B. P. Ganthia, M. Mohanty, R. Subbiah, and E. M. Anbese, “Design and Implementation of a Floating PV Model to Analyse the Power Generation,” Int. J. Photoenergy, vol. 2022, pp. 1–13, 2022, doi: 10.1155/2022/3891881.
[12] S. S. Gurfude et al., “Techno-economic Analysis of 1 MWp Floating Solar PV Plant,” in Proceedings of 2020 IEEE 1st International Conference on Smart Technologies for Power, Energy and Control, STPEC 2020, 2020, pp. 1–6, doi: 10.1109/STPEC49749.2020.9297740.
[13] J. Suh, Y. Jang, and Y. Choi, “Comparison of Electric Power Output Observed and Estimated from Floating Photovoltaic Systems: A case Study on the Hapcheon Dam, Korea,” Sustain., vol. 12, no. 1, pp. 1–14, 2020, doi: 10.3390/su12010276.
[14] M. López, N. Rodríguez, and G. Iglesias, “Combined Floating Offshore Wind and Solar PV,” J. Mar. Sci. Eng., vol. 8, no. 8, pp. 1–20, 2020, doi: 10.3390/JMSE8080576.
[15] S. P. Makhija, S. P. Dubey, R. C. Bansal, and P. K. Jena, “Techno-Environ-Economical Analysis of Floating PV/On-Ground PV/Grid Extension Systems for Electrification of a Remote Area in India,” Technol. Econ. Smart Grids Sustain. Energy, vol. 6, no. 1, pp. 1–10, 2021, doi: 10.1007/s40866-021-00104-z.
[16] A. El Hammoumi, A. Chalh, A. Allouhi, S. Motahhir, A. El Ghzizal, and A. Derouich, “Design and Construction of a Test Bench to Investigate the Potential of Floating PV Systems,” J. Clean. Prod., vol. 278, p. 123917, 2021, doi: 10.1016/j.jclepro.2020.123917.
[17] S. Z. M. Golroodbari et al., “Pooling the Cable: A techno-economic Feasibility Study of Integrating Offshore Floating Photovoltaic Solar Technology within an Offshore Wind Park,” Sol. Energy, vol. 219, no. December 2020, pp. 65–74, 2021, doi: 10.1016/j.solener.2020.12.062.
[18] A. Ghigo, E. Faraggiana, M. Sirigu, G. Mattiazzo, and G. Bracco, “Design and Analysis of a Floating Photovoltaic System for Offshore Installation: The Case Study of Lampedusa,” Energies, vol. 15, no. 23, 2022, doi: 10.3390/en15238804.
[19] W. S. Ebhota and P. Y. Tabakov, “Impact of Photovoltaic Panel Orientation and Elevation Operating Temperature on Solar Photovoltaic System Performance,” Int. J. Renew. Energy Dev., vol. 11, no. 2, pp. 591–599, 2022, doi: 10.14710/ijred.2022.43676.
[20] H. R. Iskandar, N. Heryana, N. Winanti, G. A. Setia, R. Ridwanulloh, and M. R. Alfarizi, “Optimal Design of Rooftop PV Systems for Electrical Engineering Department Laboratory,” in 2021 3rd International Conference on High Voltage Engineering and Power Systems, ICHVEPS 2021, 2021, pp. 349–354, doi: 10.1109/ICHVEPS53178.2021.9601097.
Published
2023-12-21
How to Cite
Iskandar, H., Iman, A., & Daelami, A. (2023, December 21). Feasibility and Design of Grid-connected Floating PVs in West Java, Indonesia. Elektron : Jurnal Ilmiah, 27-35. https://doi.org/https://doi.org/10.30630/eji.0.0.361
Section
Articles