Pemanfaatan Yolo Untuk Deteksi Hama Dan Penyakit Pada Daun Cabai Menggunakan Metode Deep Learning
Abstract
Chili plants are one of the horticultural crops in Indonesia which have great potential in the Indonesian economy. However, crop failure often occurs. One of the main factors causing this is pest and disease attacks on chili plants. This requires early prevention which can reduce losses. With today's technological developments, prevention can be done easily and economically by using deep learning methods. YOLO is a deep learning algorithm that is commonly used to detect objects in real time. There are 4 classes that will be tested, namely leaves affected by yellow virus disease, leaf spot, thrips pests, and healthy chili leaves. Testing was carried out with a web-based application created with the flask framework. The accuracy results of the YOLO model training process with epoch 150 were 73%. The precision, recall and mAP values obtained were 77.4%, 67.1% and 75.1%. Testing produces accuracy above 74%. The results of this research still produce accuracy that is not high enough, but the application can be used to detect it well and is quite accurate.
Downloads
References
[2] Damaiyanti, R. Yulianty, A. Marzuki, S. Kasim, and H. Rante, “ANALISIS RESIDU PESTISIDA KLORPIRIFOS PADA CABAI ( Capsicum sp .) DARI DESA BUNGIN KECAMATAN BUNGIN,” vol. 23, no. 3, pp. 106–108, 2020, doi: 10.20956/mff.v23i3.9401.
[3] A. A. Muslim and R. Arnie, “Sistem Pakar Diagnosa Hama Dan Penyakit Cabai Berbasis Teorema Bayes,” pp. 867–876.
[4] Rosalina and G. Sahuri, “Implementation of Deep Learning Methods in Detecting Disease on Chili Leaf,” vol. 9, no. 6, pp. 10–15, 2020.
[5] F. Zikra, K. Usman, and R. Patmasari, “Deteksi Penyakit Cabai Berdasarkan Citra Daun Menggunakan Metode Gray Level Co-Occurence Matrix Dan Support Vector Machine,” 2021.
[6] A. Wijaya, “Pendeteksian Penyakit pada Daun Cabai dengan Menggunakan Metode Deep Learning,” vol. 6, pp. 452–461, 2020.
[7] A. Meilin, Hama dan Penyakit pada Tanaman Cabai serta Pengendaliannya. Jambi: Science Innovation Networks, 2014.
[8] S. S. Zuain, H. Fitriyah, and R. Maulana, “Deteksi Penyakit pada Daun Cabai berdasarkan Fitur HSV dan GLCM,” vol. 5, no. 9, pp. 3934–3940, 2021.
[9] A. Tsany and R. Dzaky, “Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network,” vol. 8, no. 2, pp. 3039–3055, 2021.
[10] L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO ( You Only Look Once ),” vol. 2, no. 3, 2021.
[11] S. MR, “4 Metode Deep Learning yang Digunakan dalam Data Science,” DQLab, 2022. https://dqlab.id/4-metode-deep-learning-yang-digunakan-dalam-data-science#:~:text=Deep Learning adalah suatu proses,pola atau clustering maupun klasifikasi.
[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once : Unified , Real-Time Object Detection”.
[13] A. A. Hania, “Mengenal Artificial Intelligence, Machine Learning, & Deep Learning,” J. Teknol. Indones., vol. 1, no. June, pp. 1–6, 2017, [Online]. Available: https://amt-it.com/mengenal-perbedaan-artificial-inteligence-machine-learning-deep-learning/
[14] M. H. Ashar and D. Suarna, “Implementasi Algoritma YOLOv5 dalam Mendeteksi Penggunaan Masker Pada Kantor Biro Umum Gubernur Sulawesi Barat,” vol. 3, no. 3, pp. 298–302, 2022.
[15] F. Rofii, G. Priyandoko, M. I. Fanani, and A. Suraji, “Peningkatan Akurasi Penghitungan Jumlah Kendaraan dengan Membangkitkan Urutan Identitas Deteksi Berbasis Yolov4 Deep Neural Networks,” vol. 42, no. 2, pp. 169–177, 2021, doi: 10.14710/teknik.v42i2.37019.
[16] P. K. Laut, “Implementasi certainty factor dalam mengatasi ketidakpastian pada sistem pakar diagnosa penyakit kuda laut,” vol. VII, no. 1, 2020.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.