Prediksi Daya Listrik Pada Pembangkit Listrik Siklus Gabungan Berdasarkan Kondisi Lingkungan Menggunakan Metode Machine Learning

  • Hendra Hendra Politeknik Negeri Padang
Keywords: Electric Power, Machine Learning, Energy, Power Generation.

Abstract

The utilization of machine learning methods in energy simulation enables the optimization of energy use and improves energy efficiency. In this research, the modeling of predicting power output was conducted under full load conditions in a Combined Cycle Power Plant (CCPP) based on the surrounding environmental conditions. Historical data of CCPP operation were used to model and predict power output under various environmental conditions. In this study, four machine learning algorithms, namely Linear Regression (LR), Decision Tree (DT), Random Forest (RF), and Artificial Neural Network (ANN), were compared and evaluated for their performance. The evaluation metrics used to measure the model performance were Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-Squared. The research results indicate that the Random Forest (RF) model achieved the best performance compared to other models with MAE of 2.314, RMSE of 3.372, and R-squared of 0.961. Additionally, the RF model also performed the best compared to other models in external testing with new data, where RF obtained values of MAE 2.579, RMSE 3.315, and R-squared 0.957. These results are consistent with the previous testing, indicating that RF has stable and reliable performance in predicting larger and more diverse datasets. This research contributes to understanding the potential application of machine learning in the power generation industry, especially in CCPP.

Downloads

Download data is not yet available.

References

[1]. Siddiqui, R., Anwar, H., Ullah, F., Ullah, R., Rehman, M. A., Jan, N., & Zaman, F. (2021). Power prediction of combined cycle power plant (CCPP) using machine learning algorithm-based paradigm. Wireless Communications and Mobile Computing, 2021, 1-13.
[2]. Kurz, R., & Brun, K. (2016). Gas turbine performance. In Asia Turbomachinery & Pump Symposium. 2016 Proceedings.. Turbomachinery Laboratories, Texas A&M Engineering Experiment Station.
[3]. Bandić, L., Hasičić, M., & Kevrić, J. (2020). Prediction of power output for combined cycle power plant using random decision tree algorithms and ANFIS. In Advanced technologies, systems, and applications IV-proceedings of the international symposium on innovative and interdisciplinary applications of advanced technologies (IAT 2019) (pp. 406-416). Springer International Publishing.
[4]. Duchesne, Laurine, Efthymios Karangelos, and Louis Wehenkel. "Recent developments in machine learning for energy systems reliability management." Proceedings of the IEEE 108.9 (2020): 1656-1676.
[5]. Leni, D. (2023). PREDIKSI PELABELAN RATING AC EFISIENSI ENERGI MENGGUNAKAN PEMODELAN MACHINE LEARNING. Majalah Ilmiah Momentum, 19(1).
[6]. Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electrical Power & Energy Systems, 60, 126-140.
[7]. Alketbi, S., Nassif, A. B., Eddin, M. A., Shahin, I., & Elnagar, A. (2020, November). Predicting the power of a combined cycle power plant using machine learning methods. In 2020 International conference on communications, computing, cybersecurity, and informatics (CCCI) (pp. 1-5). IEEE.
[8]. Kaewprapha, P., Prempaneerach, P., Singh, V., Tinikul, T., & Intarangsi, N. (2022, March). Machine Learning Approaches for Estimating the Efficiency of Combined Cycle Power Plant. In 2022 International Electrical Engineering Congress (iEECON) (pp. 1-4). IEEE.
[9]. Kaewprapha, P., Prempaneerach, P., Singh, V., Tinikul, T., Intarangsi, N., & Kijkanjanarat, T. (2022, April). Predicting Full Load, Partial Load Efficiency of a Combined Cycle Power Plant Using Machine Learning Methods. In 2022 7th International Conference on Computer and Communication Systems (ICCCS) (pp. 11-16). IEEE.
[10]. Leni, D., Earnestly, F., Sumiati, R., Adriansyah, A., & Kusuma, Y. P. (2023). Evaluasi sifat mekanik baja paduan rendah bedasarkan komposisi kimia dan suhu perlakuan panas menggunakan teknik exploratory data analysis (EDA). Dinamika Teknik Mesin, 13(1), 74-83.
[11]. Leni, D. (2023). Analisis Heatmap Korelasi dan Scatterplot untuk Mengidentifikasi Faktor-Faktor yang Mempengaruhi Pelabelan AC efisiensi Energi. Jurnal Rekayasa Material, Manufaktur dan Energi, 6(1).
[12]. Pham, B. T., Jaafari, A., Avand, M., Al-Ansari, N., Dinh Du, T., Yen, H. P. H., ... & Tuyen, T. T. (2020). Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry, 12(6), 1022.
[13]. Aliyu, M., AlQudaihi, A. B., Said, S. A., & Habib, M. A. (2020). Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress, 15, 100450.
[14]. Dev, N., & Attri, R. (2015). Performance analysis of combined cycle power plant. Frontiers in Energy, 9, 371-386.
[15]. Riady, M. I., Santoso, D., & Bustan, M. D. (2019, April). Thermodynamics Performance Evaluation in Combined Cycle Power Plant by Using Combined Pinch and Exergy Analysis. In Journal of Physics: Conference Series (Vol. 1198, No. 4, p. 042006). IOP Publishing.
[16]. Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A comprehensive evaluation of ensemble learning for stock-market prediction. Journal of Big Data, 7(1), 1-40.
Published
2023-12-28
How to Cite
Hendra, H. (2023, December 28). Prediksi Daya Listrik Pada Pembangkit Listrik Siklus Gabungan Berdasarkan Kondisi Lingkungan Menggunakan Metode Machine Learning. Elektron : Jurnal Ilmiah, 72-82. https://doi.org/https://doi.org/10.30630/eji.0.0.415
Section
Articles