Segmentasi Area Perkebunan Sawit Melalui Aerial Images Menggunakan Deep Learning

  • Novi Novi Politeknik Negeri Padang
  • Hendrick Hendrick Politeknik Negeri Padang
  • Muhammad Rohfadli Politeknik Negeri Padang
  • Aulia Novira Politeknik Negeri Padang
Keywords: drone, sawit, Yolo, Instant segmentation, NVIDIA Jetson nano

Abstract

Pemantauan lahan sawit secara konvensional biasanya dilakukan dengan cara manual oleh petani yang mengerahkan beberapa orang untuk menyebar di area lahan. Namun, pendekatan ini membutuhkan waktu dan tenaga yang cukup besar, serta rentan terhadap ketidakakuratan dalam pemantauan. Sebagai alternatif, perusahaan besar yang mengelola lahan sawit umumnya menggunakan teknologi drone untuk memantau lahan, diikuti dengan penggunaan perangkat lunak analisis yang kompleks. Namun, pemanfaatan teknologi ini seringkali memerlukan biaya dan peralatan yang mahal. Penelitian ini bertujuan untuk mengembangkan sistem pemantauan lahan sawit menggunakan teknologi yang lebih terjangkau dan praktis, yaitu dengan memanfaatkan drone yang tersedia di pasaran serta NVIDIA Jetson Nano sebagai perangkat pemrosesan gambar portabel. Sistem ini menggunakan metode deep learning, dengan mengimplementasikan algoritma You Only Look Once (YOLO) untuk deteksi objek dan Instance Segmentation untuk segmentasi area lahan sawit. YOLO memungkinkan pendeteksian objek secara real-time dengan akurasi tinggi, sementara Instance Segmentation memfasilitasi pemisahan area sawit secara lebih detail, yang akan membantu dalam analisis lebih mendalam. Dengan menggunakan peralatan yang lebih terjangkau dan portabel, penelitian ini bertujuan untuk mempermudah petani atau pihak terkait dalam memantau dan menganalisis kondisi lahan sawit secara efektif, efisien, dan dengan biaya yang lebih rendah dibandingkan dengan teknologi pemantauan konvensional atau yang digunakan perusahaan besar.

Downloads

Download data is not yet available.

References

[1] S. Heriza, Buchori Damayanti, I. S. Harahap, and N. Maryana, “Diversity and Composition of Termites in Several Types of Land Use,” AGRIVITA, vol. 46, no. 3, pp. 602–610, 2024.
[2] M. Popkin, V. J. Reiss-Woolever, E. C. Turner, and S. H. Luke, “A systematic map of within-plantation oil palm management practices reveals a rapidly growing but patchy evidence base,” PLOS Sustainability and Transformation, vol. 1, no. 7, p. e0000023, Jul. 2022, doi: 10.1371/journal.pstr.0000023.
[3] A. F. Adisa, P. O. Omotainse, A. A. Babalola, A. G. Adisa, O. M. Adeola, and A. T. Ajose, “Technical and Social – Economic Impact and Remedy of a Large-Scale Mechanized Plantation Farming on the Host Community,” 2023, pp. 309–331. doi: 10.1007/978-3-031-13090-8_31.
[4] H. Sastrohartono, A. P. Suryotomo, S. Saifullah, T. Suparyanto, A. S. Perbangsa, and B. Pardamean, “Drone Application Model for Image Acquisition of Plantation Areas and Oil Palm Trees Counting,” in 2022 International Conference on Information Management and Technology (ICIMTech), IEEE, Aug. 2022, pp. 167–171. doi: 10.1109/ICIMTech55957.2022.9915223.
[5] S. Banerjee, T. Swain, J. Mishra, M. K. Rath, and T. Samant, “Surveillance using Unmanned Aerial Vehicle for Triggered Activity Capturing,” in 2022 1st IEEE International Conference on Industrial Electronics: Developments & Applications (ICIDeA), IEEE, Oct. 2022, pp. 6–11. doi: 10.1109/ICIDeA53933.2022.9970030.
[6] V. Saikrishnan and M. Karthikeyan, “Automated Object Detection and Classification using Metaheuristics with Deep Learning on Surveillance Videos,” in 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), IEEE, Mar. 2023, pp. 29–34. doi: 10.1109/ICSCDS56580.2023.10104740.
[7] J. Liu et al., “Deep Learning Object Detection,” 2023, pp. 300–309. doi: 10.1007/978-3-031-28124-2_28.
[8] X. Ai, Q. He, and P. Zhang, “Analysis of deep learning object detection methods,” in Third International Conference on Machine Learning and Computer Application (ICMLCA 2022), F. Zhou and S. Ba, Eds., SPIE, May 2023, p. 3. doi: 10.1117/12.2675099.
[9] P. Chhabra and S. Goyal, “An Examination of the Feasibility of Various Deep Learning Object Detecting Techniques,” in 2023 International Conference on Disruptive Technologies (ICDT), IEEE, May 2023, pp. 237–242. doi: 10.1109/ICDT57929.2023.10151099.
[10] H. Wang, W. Wang, and Y. Liu, “X-YOLO,” in Proceedings of the ACM Turing Celebration Conference - China, New York, NY, USA: ACM, May 2020, pp. 127–132. doi: 10.1145/3393527.3393549.
[11] A. Betti and M. Tucci, “YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Detection in Aerial Imagery,” Sensors, vol. 23, no. 4, p. 1865, Feb. 2023, doi: 10.3390/s23041865.
[12] R. Mahendran, S. N. Tadiboina, B. V. Sai Thrinath, A. Gadgil, S. Madem, and Y. Srivastava, “Application of Machine Learning and Internet of Things for Identification of Nutrient Deficiencies in Oil Palm,” in 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), IEEE, Dec. 2022, pp. 2024–2028. doi: 10.1109/IC3I56241.2022.10073261.
[13] M. Mohammed and N. K. Alqahtani, “Design and Validation of Automated Sensor-Based Artificial Ripening System Combined with Ultrasound Pretreatment for Date Fruits,” Agronomy, vol. 12, no. 11, p. 2805, Nov. 2022, doi: 10.3390/agronomy12112805.
[14] J. A. Amu, H. Yatim, I. Tatu, and H. A. Katili, “Analysis of Soil Fertility in Oil Palm Plantation (Elaeis guineensis Jacq) Smallholder Farmers in East Luwuk District, Banggai Regency,” CELEBES Agricultural, vol. 3, no. 1, pp. 72–81, Oct. 2022, doi: 10.52045/jca.v3i1.277.
[15] R. Y. Aburasain, E. A. Edirisinghe, and A. Albatay, “Palm Tree Detection in Drone Images Using Deep Convolutional Neural Networks: Investigating the Effective Use of YOLO V3,” 2021, pp. 21–36. doi: 10.1007/978-3-030-74728-2_3.
[16] M. Pulipalupula, S. Patlola, M. Nayaki, M. Yadlapati, J. Das, and B. R. Sanjeeva Reddy, “Object Detection using You Only Look Once (YOLO) Algorithm in Convolution Neural Network (CNN),” in 2023 IEEE 8th International Conference for Convergence in Technology (I2CT), IEEE, Apr. 2023, pp. 1–4. doi: 10.1109/I2CT57861.2023.10126213.
Published
2025-04-24
How to Cite
Novi, N., Hendrick, H., Rohfadli, M., & Novira, A. (2025, April 24). Segmentasi Area Perkebunan Sawit Melalui Aerial Images Menggunakan Deep Learning. Elektron : Jurnal Ilmiah, 16(2), 49-54. https://doi.org/https://doi.org/10.30630/eji.16.2.544
Section
Articles